УДК 575.174.015.3:597.553.2

DOI 10.15853/2072-8212.2015.38.49-56

ГЕНЕТИЧЕСКОЕ РАЗНООБРАЗИЕ НЕРКИ (ONCORHYNCHUS NERKA) ИЗ НЕКОТОРЫХ РЕК ВОСТОЧНОЙ КАМЧАТКИ И МАТЕРИКОВОГО ПОБЕРЕЖЬЯ ОХОТСКОГО МОРЯ ПО ДАННЫМ ПОЛИМОРФИЗМА ГЕНА ЦИТОХРОМА В МИТОХОНДРИАЛЬНОЙ ДНК

Л.Т. Бачевская*, В.В. Переверзева*, Г.Д. Иванова*, О.А. Пильганчук**, Г.А. Агапова*, Н.Ю. Шпигальская**

*Зав. лаб., ст. н. с., н. с., н. с.; Институт биологических проблем Севера ДВО РАН

685000 Магадан, Портовая, 18

Тел., факс: (4132) 64-31-21; (4132) 63-44-63

E-mail: gekki54@, mail.ru

** Ст. н. с., первый зам. директора; Камчатский научно-исследовательский

институт рыбного хозяйства и океанографии

683000 Петропавловск-Камчатский, Набережная, 18

Тел., факс: (4152) 41-27-01 E-mail: kamniro@kamniro.ru

HEPKA (ONCORHYNCHUS NERKA), СЕКВЕНИРОВАНИЕ МТДНК, МОЛЕКУЛЯРНЫЕ МАРКЕРЫ, ГЕН ЦИТОХРОМА В, ГЕНЕТИЧЕСКОЕ РАЗНООБРАЗИЕ

Изучено генетическое разнообразие популяций нерки *Oncorhynchus nerka* (Walbaum) из рек Восточной Камчатки и материкового побережья Охотского моря с использованием данных об изменчивости гена цитохрома *b* (*cytb*) мтДНК. Проведена оценка значимости различий по нуклеотидным заменам и по частотам гаплотипов между парами исследованных популяций. Выявлены различия между неркой из разных регионов (североохотоморского и беринговоморского), а также между изученными локальностями из одного региона. В то же время показано, что доля межпопуляционной генетической изменчивости относительно умеренная (12,67%), что свидетельствует об относительно небольшом времени дивергенции популяций. Модель распределения частот попарных нуклеотидных различий, полученная для популяций из исследованной части ареала вида, позволяет предположить, что локальности нерки образовались в результате слияния генетически отдаленных, конспецифичных популяций. Возможно, в истории вида происходило разделение его ареала, что способствовало образованию двух генетически независимых (на протяжении многих поколений) линий.

GENETIC DIVERSITY OF THE SOCKEYE SALMON (ONCORHYNCHUS NERKA) FROM SOME RIVERS OF EASTERN KAMCHATKA AND COASTAL PART OF THE SEA OF OKHOTSK ACCORDING TO POLYMORPHISM DATA OF CYTOCHROME B GENE OF MITOCHONDRIAL DNA

L.T. Bachevskaya*, V.V. Pereverzeva*, G.D. Ivanova*, O.A. Pilganchuk**, G.A. Agapova*, N.Yu. Shpigalskaya**

* Head of the lab., senior scientist, researcher, researcher; Institute of Biological Problems of the North, Far East Branch, Russian Academy of Sciences

685000 Magadan, Portovaya, 18

Tel., fax: (4132) 64-31-21; (4132) 63-44-63

E-mail: gekki54@ mail.ru;

** Senior scientist, first deputy director; Kamchatka Research Institute of Fisheries and Oceanography 683000 Petropavlovsk-Kamchatsky, Naberedzhnaya, 18

Tel., fax: (415-2) 41-27-01

E-mail: kamniro@kamniro.ru

SOCKEYE SALMON (ONCORHYNCHUS NERKA), SEQUENCING OF MTDNA, MOLECULAR MARKERS, THE GENE OF CYTOCHROME B, GENETIC DIVERSITY

It was studied the genetic diversity of sockeye salmon *Oncorhynchus nerka* (Walbaum) populations in the rivers of the Eastern Kamchatka mainland coast and Okhotsk Sea by using data on the variability of cytochrome *b* (cytb) mtDNA. The assessment has taken place to understand the significance of differences in nucleotide substitutions and haplotype frequencies between the studied species' population pairs. Outcome is a discovery of significant differences between sockeye salmon from different geographical regions (of the northern part of the sea of Okhotsk and Bering sea), as well as from the single region's locations. At the same time percentage of interpopulation genetic variability was shown to be rather moderate (12.67%), that indicates relatively short time of population divergence. The frequency distribution pattern of pairwise nucleotide differences obtained for the species populations, of the investigated part of its range, suggests that the studied sockeye salmon's local versions are formed by the merger of genetically distant, conspecific populations. Perhaps in the species' history there had been a separation of its range into two genetically independent (over many generations) units.

На Северо-Востоке России нерка наиболее широко распространена в реках Камчатки. Она имеет сложную внутривидовую структуру (Коновалов, 1980; Крогиус и др., 1987; Бугаев, 1995; Алтухов и др., 1997; Алтухов, 2003; Шпигальская и др., 2005; Пустовойт, 2006; Варнавская, 2006). Этот вид не столь массово заходит на нерест в реки материкового побережья Охотского моря (Черешнев и др., 2002). Среди наиболее крупных популяций указанного региона можно выделить нерку бассейна р. Олы (Волобуев, Марченко, 2011). В последнее время для расширения представлений о внутривидовой структуре нерки и ее генетическом разнообразии все чаще применяются молекулярногенетические методы, среди которых важное место занимает изучение полиморфизма митохондриальной ДНК. Скорость накопления мутаций в митохондриальном геноме выше, чем в ядерной ДНК (Moritz et al., 1987). Это делает мтДНК удобным молекулярным маркером для исследования популяционной структуры вида и дает возможность реконструировать в общих чертах историю формирования популяций. Помимо того, для поддержания устойчивого воспроизводства нерки необходимо иметь представление о наследственном своеобразии эксплуатируемых популяций ценного промыслового вида. Это возможно при условии увеличения числа наиболее информативных молекулярно-генетических маркеров и расширения географии изучения ее популяций. Несмотря на имеющиеся успехи в исследованиях популяционной структуры нерки с помощью молекулярно-генетических методов (Зеленина и др., 2006; Хрусталева, Зеленина, 2008; Хрусталева и др., 2010; Beacham, Wood, 1999; Beacham et al., 2000; Beacham et al., 2010; Beacham et al., 2011; Бачевская и др., 2013; Пильганчук и др., 2013), накопление и расширение информации в данном направлении по-прежнему актуальны. Для выявления внутривидовой дифференциации неоднократно был использован ген cytb мтДНК. Большинство работ в этом направлении основано на применении рестрикционного анализа (Брыков и др., 2003; Брыков и др., 2005). В настоящее время наиболее перспективным является секвенирование нуклеотидных последовательностей генома, дающее наиболее полную информацию. Подобный подход был использован нами с целью определения полиморфизма и анализа изменчивости нуклеотидных последовательностей гена *cytb* мтДНК нерки из рек Восточной Камчатки и материкового побережья Охотского моря.

МАТЕРИАЛ И МЕТОДИКА

Карта-схема с указанием речных систем и точек сбора биологического материала приведена на рис. 1. Материал (314 экз.) был собран в период нерестового хода нерки в 2010-2013 гг. Выделение и очистка ДНК проводились по модифицированному методу Флеминга и Кука (Fleming, Cook, 2002). Ген *cytb* митохондриального генома амплифицировался с использованием подобранных нами по принципу комплиментарности праймеров CbLkt14306 (CCT GCT CGG ACT CTA ACC GAA ACT AAT GAC CG) и CbRkt15563 (CCG ACT TCC GGA TTA CAA GAC CGG CGC TC). Cостав ПЦРной смеси и температурные условия ПЦР соответствуют таковым в работе Миллера с соавторами (Miller et al., 1998). Определение нуклеотидных последовательностей амплифицированного участка мтДНК проведено по стандартной методике с применением наборов для циклического секвенирования ДНК Big Dye Terminator (Applied Biosystems, v. 3.1) и генетического анализатора ABI Prism 3130 (Applied Biosystems, США). Все нуклеотидные последовательности депонированы в Gen-Bank. Выравнивание и анализ нуклеотидных последовательностей осуществляли с использованием пакета программ MEGA-6 (Tamura et al., 2013) и ARLEQUIN 3.0. (Excoffier et al., 2005). Соответствие характера нуклеотидных замен гипотезе

Рис. 1. Карта-схема района сбора биологических проб из популяций нерки Северо-Востока России

нейтральности (для использованного маркера) в выборках нерки устанавливали с помощью теста Ф. Таджимы (Тајіта, 1989). Филогенетический анализ проводили с применением метода «ближайшего соседа» (NJ-анализ) и 2-параметрической модели Кимуры (Татига et al., 2013). Для этого наряду с собственными данными были привлечены нуклеотидные последовательности гена *cytb* нерки из GenBank, EU055889, NC008615 (Hsieh et al., 2006); JX960816, JX960817 (Crete-Lafreniere et al., 2012).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изученный ген *cytb* мтДНК нерки содержит 1140 пар нуклеотидов (пн), которые соответствуют положению с 15 377 пн по 16 517 пн полного митохондриального генома образца GenBank, NC008615 (Hsieh et al., 2006). В процессе анализа полученных нуклеотидных последовательностей обнаружено на порядок больше транзиций, чем трансверсий, что вполне объяснимо, так как транзиции происходят значительно чаще трансверсий (Nei, 1987; Nei, Kumar, 2000). Кроме того, отмечено, что число замен в третьем положении кодона гена *cytb* в 5 раз превышает их количество в первом, что вполне объяснимо. Известно, что третий нуклеотид большинства кодонов в транслируемых участках гена наиболее вариабелен из-за вырожденности кода (Zardoya, Meyer, 1996). У некоторых видов тихоокеанских лососей (кета, горбуша, кижуч) число вариабельных позиций составляет 1,6-3,6% от общей длины гена *cytb* мтДНК (Бачевская и др., 2011; Бачевская, Переверзева, 2013). Число вариабельных сайтов изученного гена у нерки — 2,02%, что находится в пределах значений, отмеченных для других видов этого рода.

Исследованные популяции из рек Восточной Камчатки и материкового побережья Охотского моря были представлены 21 вариантом нуклеотидных последовательностей гена cytb (рис. 2). Следует отметить, что во всех изученных выборках наблюдалось некоторое смещение нуклеотидного состава кодирующей цепи гена cytb в сторону тимина и аденина (28,8 и 23,4% соответственно) относительно цитозина и гуанина (30,8 и 17,0%). Подобное смещение достаточно часто отмечается в митохондриальных геномах позвоночных животных (Avise, 1994). Частота распределения гаплотипов (табл. 1) соответствовала характерному для морских видов рыб, т. е. небольшое число

вариантов встречалось в выборках с высокой частотой, а другие были редкими или уникальными.

Все исследованные популяции нерки характеризуются наличием двух часто встречающихся гаплотипов Ncb1 и Ncb2. При этом последний вариант более распространен в изученных выборках (табл. 1). По количеству гаплотипов нуклеотидных последовательностей гена cytb отличается популяция нерки из р. Еловки (Восточная Камчатка, басс. р. Камчатки), в которой обнаружено 11 вариантов. В то же время анализ генетического разнообразия показал, что для этой популяции характерны относительно высокие значения (табл. 2) гаплотипического (h), но низкие величины нуклеотидного (π) разнообразия. Такое распределение характерно для популяций с быстрым ростом численности от небольшого количества основателей при условии, что прошло достаточное время для восстановления гаплотипической изменчивости вследствие мутационного процесса, но недостаточное, чтобы накопились значительные различия между нуклеотидными последовательностями (Avise, 1994). Совсем другой характер распределения показателей генетического разнообразия наблюдается у нерки из рек Озерная (восточная) и Асача. Эти популяции характеризуются высокими

			111
	1223344445	5667777889	9001
	1281922460	6115789798	9370
	1552936188	2286432380	0514
Ncb1 KC733794	ACTTCGAACG	GGTCCGTAGC	ATCA
Ncb2 KC733795		TCG	GG
Ncb3 KC733796	C	TCG	GG
Ncb4 KC733797	.T		
Ncb5 KC733799		TCGA.	GG
Ncb6 KC733799			T.
Ncb7 KF955548		.A	
Ncb8 KF955549	A		
Ncb9 KF955550	G	TCG	GG
Ncb10 KJ769157	A		
Ncb11 KJ769158		TCG	GC.G
Ncb12 KJ769159		CTCG	GG
Ncb13 KJ769160	A .	.A	
Ncb14 KJ769161	C	TCG	GG
Ncb15 KJ769162	A	TCG	GG
Ncb16 KJ769163	G	TCG	GG
Ncb17 KJ769164		TCG	G
Ncb18 KJ769165		TCGAT	GG
Ncb19 KJ769166		ATCGA.	GG
Ncb20 KJ769167		T.ACG	GG
Ncb21 KJ769168		T	
NC008615	G		
Ef055889	G		
Канада JX960816		TCG	GG
Канала ЈХ960817			

Рис. 2. Нуклеотидные последовательности гена *cytb* мтДНК нерки из рек Восточной Камчатки и материкового побережья Охотского моря

значениями h и π. Вероятнее всего, это свидетельствует об относительной стабильности указанных локальностей (при высокой численности) на протяжении длительного исторического периода их существования (Avise, 1994). Низкие значения показателей гаплотипического и нуклеотидного разнообразия отмечены в выборке нерки из р. Бушуйки (приток оз. Азабачье, басс. р. Камчатки). Наблюдаемое своеобразие генетического облика этой популяции, по-видимому, в значительной мере определяется эффектом «основателя» (Кимура, 1985; Avise, 1994). Не исключено также, что в ее истории неоднократно происходило существенное снижение численности (эффект «горлышка бутылки») (Nei, 1987). Поскольку принято считать, что популяции с низкими значениями h и π являются исторически более молодыми, можно предположить, что указанные процессы в популяции нерки р. Бушуйки происходили в относительно недавнем геологическом прошлом. В то же время восточно-камчатская нерка в целом, как и ольская (табл. 2), характеризуется относительно высокими значениями нуклеотидного и гаплотипического разнообразия, что свойственно не только для целостных популяций, имеющих длительное время высокую эффективную численность, но и для произошедших путем объединения генетически неоднородных и ранее изолированных группировок (Rogers, 1998).

Для уточнения причин, способствующих отмеченному сочетанию показателей генетического разнообразия, была построена гистограмма (рис. 3) распределения частот попарных нуклеотидных различий между гаплотипами (Mismatch distribution) нерки. Такой подход позволяет отразить историю демографических событий (Rogers, Harpending, 1992) в популяциях этого вида. Паттерн распределения частот попарных нуклеотидных различий, полученный для исследованных популяций вида, характеризуется наличием двух ярко выраженных максимумов значений, т. е. является бимодальным (рис. 3), что, по-видимому, определяется наличием пары частых гаплотипов. Возможно, такое распределение свидетельствует в пользу

Таблица 1. Распределение частот гаплотипов гена *cytb* мтДНК нерки из рек Восточной Камчатки и материкового побережья Охотского моря

го пооережья Охотско	ого моря						
Локальность	Ола	Бушуйка	Хайлюля	Озерная	Еловка	Апука	Асача
Объем выборки (N)	48	50	48	50	44	48	26
Гаплотипы			Час	тота гаплоти	ПОВ		
Ncb1	0,5526	0,2400	0,3958	0,5000	0,1136	0,5417	0,0625
Ncb2	0,4211	0,6800	0,5625	0,3400	0,6591	0,3125	0,3125
Ncb3	0,0263	0,0000	0,0000	0,0000	0,0000	0,0208	0,0000
Ncb4	0,0000	0,0000	0,0208	0,0200	0,0000	0,0000	0,0000
Ncb5	0,0000	0,0000	0,0208	0,0000	0,0227	0,0000	0,0000
Ncb6	0,0000	0,0800	0,0000	0,0000	0,0000	0,0000	0,0000
Ncb7	0,0000	0,0000	0,0000	0,0200	0,0000	0,0000	0,0000
Ncb8	0,0000	0,0000	0,0000	0,0200	0,0000	0,0000	0,0000
Ncb9	0,0000	0,0000	0,0000	0,0200	0,0000	0,0000	0,0000
Ncb10	0,0000	0,0000	0,0000	0,0000	0,0000	0,1250	0,0000
Ncb11	0,0000	0,0000	0,0000	0,0000	0,0227	0,0000	0,0000
Ncb12	0,0000	0,0000	0,0000	0,0000	0,0227	0,0000	0,0000
Ncb13	0,0000	0,0000	0,0000	0,0000	0,0227	0,0000	0,0000
Ncb14	0,0000	0,0000	0,0000	0,0200	0,0227	0,0000	0,0000
Ncb15	0,0000	0,0000	0,0000	0,0000	0,0227	0,0000	0,0000
Ncb16	0,0000	0,0000	0,0000	0,0000	0,0227	0,0000	0,0000
Ncb17	0,0000	0,0000	0,0000	0,0000	0,0455	0,0000	0,0000
Ncb18	0,0000	0,0000	0,0000	0,0000	0,0227	0,0000	0,0000
Ncb19	0,0000	0,0000	0,0000	0,0600	0,0000	0,0000	0,0000
Ncb20	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,3125
Ncb21	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,3125

Таблица 2. Нуклеотидное и гаплотипическое разнообразие нерки из рек Восточной Камчатки и материкового побережья Охотского моря

поосрежил одотского морл				
Локальность (река)	$\pi \pm sd$	$h \pm sd$	S	D
Ола	$0,002273\pm0,001383$	$0,5306\pm,0368$	6	2,19949
Бушуйка	$0,002079\pm0,001278$	$0,4833\pm0,0652$	6	1,95967
Хайлюля	$0,002251\pm0,001364$	$0,5372\pm0,0384$	7	1,67113
Озерная	$0,002583\pm0,001527$	$0,6416\pm0,0478$	12	0,29305
Еловка	$0,001510\pm0,000996$	$0,5592\pm0,0870$	14	-1,44334*
Апука	$0,002223\pm0,001351$	$0,6055\pm0,0480$	7	1,61866
Асача	$0,002997\pm0,001811$	$0,7500\pm0,0509$	7	2,18325

Примечание: π — нуклеотидное разнообразие; h — гаплотипическое разнообразие; sd — стандартное отклонение; S — число вариабельных сайтов; D — коэффициент теста Tajima; *p<0,05

предположения, что исследованные локальности образовались в результате слияния генетически отдаленных, конспецифичных популяций, в каждой из которых преобладал один из наиболее распространенных гаплотипов. Это не противоречит высказанному ранее предположению, что в истории вида происходило разделение его ареала на две аллопатричные генетически независимые на протяжении многих поколений единицы (Брыков и др., 2005).

В процессе генетического анализа с использованием методов F-статистики ARLEQUIN 3.0. (Excoffier et al., 2005) проведена оценка значимости различий по нуклеотидным заменам, а также по

частотам гаплотипов в сравниваемых парах исследованных популяций из реки материкового побережья Охотского моря и рек Восточной Камчатки. Важно подчеркнуть, что в обоих случаях обнаруженные отличия (р<0,05) проявляются не только между популяциями разных регионов, но и между изученными локальностями внутри одного региона (табл. 3). Анализ матрицы нуклеотидной дивергенции мтДНК исследованных выборок показал, что различие (p<0,05) наблюдается между популяциями из рек Восточной Камчатки (Апука и Еловка). Такой же уровень различий отмечен между выборками из рек Ола (североохотоморское побережье) и Еловка (беринговоморское побережье Камчатки, басс. р. Камчатки). Филогенетический анализ проводили с применением метода «ближайшего соседа» (NJ-анализ) и 2-параметрической модели Кимуры (Татиra et al., 2013). Результаты кластерного анализа представлены с помощью дендрограммы (рис. 4). Этот метод позволяет корректно реконструировать филогенетические деревья при сравнении близкородственных популяций (Saitou, Imanishi, 1989).

Для филогенетического анализа были использованы также ну-

клеотидные последовательности гена cytb мтДНК нерки из GenBank. Из рис. 4 следует, что восточно-камчатская нерка распределилась в две группы: А и Б. Необходимо отметить, что группа А более структурирована. Североохотоморская нерка, представленная выборкой из р. Олы, занимает пограничное положение между выделенными группами популяций. Вероятно, такая кластеризация сложилась не случайно. По-видимому, она обусловлена историей формирования и расселения исследованных популяций на данной части ареала вида. Как известно, в периоды позднеплейстоценовых оледенений значительные участки ареала нерки были покрыты ледником (Брайцева и др.,

Рис. 3. Распределение частот попарных различий между нуклеотидными последовательностями гена *cytb* мтДНК нерки из рек Восточной Камчатки и материкового побережья Охотского моря

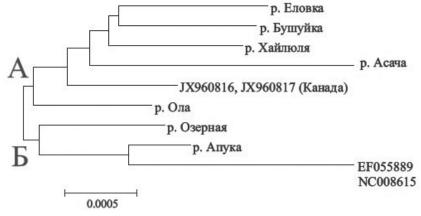


Рис. 4. Филогенетические взаимоотношения между исследованными популяциями нерки из рек Восточной Камчатки и материкового побережья Охотского моря). NJ-дендрограмма; масштабный отрезок соответствует числу нуклеотидных замен на один сайт)

1968; Линдберг, 1972; Дорт-Гольц, Терехова, 1976), что привело к разрыву ранее единого ареала вида на несколько изолятов (Глубоковский, 1995). Популяции нерки, сохранившиеся в рефугиумах, в дальнейшем, по-видимому, стали источником для реколонизации этого вида в реки материкового побережья Охотского моря и Восточной Камчатки.

Полученные данные проанализировали с использованием программы AMOVA (Analysis of Molecular Variance) (Excoffier et al., 2005). Для проведения расчетов исследованные популяции сгруппировали по региональному принципу. В первую группу были включены все нуклеотидные последовательности гена *cytb* мтДНК нерки из рек Камчатки. Во вторую — все гаплотипы, характеризующие нерку материкового побережья Охотского моря. Расчеты показали, что доли внутрипопуляционной, межпопуляционной и межгрупповой генетической изменчивости составили 90,71%, 12,67% и -3,38% соответственно. Повидимому, умеренная доля межпопуляционной генетической дисперсии свидетельствует об относительно небольшом времени дивергенции популяций нерки из исследованного географического района. Тем не менее необходимо подчеркнуть, что некоторые из исследованных популяций, относящиеся к единому региону, по генетическим параметрам значимо отличаются (табл. 3). В рассматриваемом случае наблюдается более высокий уровень дифференциации между выборками внутри групп, чем между сопоставляемыми группами. По-видимому, это обстоятельство является возможной причиной отрицательного значения показателя межгрупповой генетической изменчивости. Наряду с этим нельзя исключать другую возможную причину отмеченного факта, связанную со статистическим отклонением, приводящим к отрицательному результату (Weir, 1996). В то же время преобладание двух гаплотипов (Ncb1 и Ncb2), наиболее распространенных во всех попу-

Таблица 3. Генетические различия между парами исследованных популяций нерки из рек Восточной Камчатки и материкового побережья Охотского моря

№/Локальность (река)	1	2	3	4	5	6	7
1. Ола	0	+	_	_	+	_	_
2. Бушуйка	+	0	_	+	+	+	_
3. Хайлюля	_	_	0	_	+	+	_
4. Озерная	_	+	_	0	+	_	+
5. Еловка	+	+	+	+	0	+	+
6. Апука	_	+	+	_	+	0	+
7. Асача	_	_	_	+	+	+	0

Примечание. Выше диагонали обозначены символом «+» достоверные различия (P<0,050) по частотам гаплотипов, ниже диагонали — по нуклеотидным заменам

ляциях из рек Восточной Камчатки, материкового побережья Охотского моря, а также у канадских образцов GenBank, JX960816, JX960817(Crete-Lafreniere et al., 2012), дает основание предполагать общность их происхождения.

ЗАКЛЮЧЕНИЕ

Исследования изменчивости гена цитохрома *b* мтДНК нерки Oncorhynchus nerka (Walbaum) из некоторых рек материкового побережья Охотского моря и полуострова Камчатки позволили отметить особенности генетического разнообразия изученных локальностей. Представление о наследственном своеобразии эксплуатируемых популяций этого ценного промыслового вида имеет важное значение для поддержания его устойчивого воспроизводства (Алтухов, 2003). В процессе анализа полученных результатов проведена оценка значимости различий по нуклеотидным заменам и по частотам гаплотипов между парами исследованных популяций. Обнаружены различия между неркой из разных регионов (североохотоморского и беринговоморского), а также между локальностями внутри одного региона. В то же время показано, что доля межпопуляционной генетической изменчивости относительно умеренная, что свидетельствует об относительно небольшом времени дивергенции изученных популяций нерки. Преобладание двух гаплотипов, которые широко распространены во всех рассматриваемых популяциях рек Восточной Камчатки и материкового побережья Охотского моря, по-видимому, свидетельствует об общности их происхождения. В то же время в истории вида, вероятно, происходило разделение его ареала, что способствовало образованию двух независимых линий по мтДНК.

СПИСОК ЛИТЕРАТУРЫ

Алтухов Ю.П. 2003. Генетические процессы в популяциях. М.: Академкнига. 431 с.

Алтухов Ю.П., Салменкова Е.А., Омельченко В.Т. 1997. Популяционная генетика лососевых рыб. М.: Наука. 288 с.

Бачевская Л.Т., Переверзева В.В. 2013. Изменчивость гена цитохрома *b* митохондриальной ДНК горбуши *Oncorhynchus gorbuscha* (Walbaum) из рек материкового побережья Охотского моря и острова Завьялова // Изв. РАН. Серия биол. № 1. С. 15–23. *Бачевская* Л.Т., Переверзева В.В., Иванова Г.Д. 2013. Изменчивость гена цитохрома *b* митохондри-

альной ДНК нерки (*Oncorhynchus nerka* Walbaum) из рек Камчатки и северного побережья Охотского моря // Сохранение биоразнообразия Камчатки и прилегающих морей: Тезисы докл. XIV Междунар. научн. конф. (Петропавловск-Камчатский, 14–15 ноября 2013 г.). Петропавловск-Камчатский: Камчатпресс. С. 40–43.

Бачевская Л.Т., Переверзева В.В., Малинина Т.В. 2011. Генетическая структура популяций кеты (*Oncorhynchus keta* Walbaum) по данным об изменчивости нуклеотидных последовательностей гена цитохрома b митохондриальной ДНК // Генетика. Т. 47. № 11. С. 1481–1490.

Брайцева О.А., Мелекесцев И.В., Евтеева И.С., Лупикина Е.Г. 1968. Стратиграфия четвертичных отложений Камчатки. М.: Наука. 227 с.

Брыков В.А., Полякова Н.Е., Подлесных А.В. 2003. Дивергенция митохондриальной ДНК в популяциях нерки (*Oncorhynchus nerka* Walbaum) озера Азабачьего (Камчатка) // Генетика. Т. 39. № 12. С. 1687–1692.

Брыков В.А., Полякова Н.Е., Подлесных А.В. и др. 2005. Влияние биотопов на генетическую дифференциацию популяций нерки (*Oncorhynchus nerka*) // Генетика. Т. 41. № 5. С. 635–645.

Бугаев В.Ф. 1995. Азиатская нерка. М.: Колос. 463 с.

Варнавская Н.В. 2006. Генетическая дифференциация популяций тихоокеанских лососей. Петропавловск-Камчатский: КамчатНИРО. 488 с.

Волобуев В.В., Марченко С.Л. 2011. Тихоокеанские лососи континентального побережья Охотского моря (биология, популяционная структура, динамика численности, промысел). Магадан: СВНЦ ДВО РАН. 303 с.

Глубоковский М.К. 1995. Эволюционная биология лососевых рыб. М.: Наука. 343 с.

Дорт-Гольц Ю.Е., Терехова В.Е. 1976. История развития западной окраины Берингийской суши в кайнозое: // Берингия в кайнозое: Сб. статей Всесоюз. симпоз. Владивосток: ДВНЦ АН СССР. С. 54–59. Зеленина Д.А., Хрусталева А.М., Волков А.А. 2006. Сравнительное исследование популяционной структуры и определение популяционной принадлежности нерки (Oncorhynchus nerka) Западной Камчатки с помощью RAPD-PCR и анализа полиморфизма микросателлитных локусов // Генетика. Т. 42. № 5. С. 693–704.

Кимура М. 1985. Молекулярная эволюция: теория нейтральности. М.: Мир. 398 с.

Коновалов С.М. 1980. Популяционная биология тихоокеанских лососей. Л.: Наука. 236 с.

Крогиус Ф.В., Крохин Е.М., Меншуткин В.В. 1987. Тихоокеанский лосось — нерка (красная) в экологической системе оз. Дальнего (Камчатка). Л.: Наука. 198 с.

Линдберг Г.У. 1972. Крупные колебания уровня океана в четвертичный период. Л.: Наука. 548 с. Пильганчук О.А., Шпигальская Н.Ю., Савенков В.В. и др. 2013. Изменчивость микросателлитных локусов в популяциях нерки Oncorhynchus nerka (Walbaum) восточного побережья Камчатки // Биология моря. Т. 39. № 4. С. 272–280.

Пустовойт С.П. 2006. Морфологическое разнообразие нерки (*Oncorhynchus nerka* (Walbaum)) реки Камчатки // Сибирский экологический журнал. № 4. С. 503–509.

Хрусталева А.М., Волков А.А., Стоклицкая Н.С. и др. 2010. Сравнительный анализ изменчивости STR и SNP локусов в популяциях нерки (*Oncorhynchus nerka*) Восточной и Западной Камчатки // Генетика. Т. 46. № 11. С. 1544—1555.

Хрусталева А.М., Зеленина Д.А. 2008. Сезонная и межгодовая изменчивость микросателлитной ДНК нерки (Oncorhynchus nerka) двух озерно-речных систем Камчатки // Генетика. Т. 44. № 7. С. 948–955. Черешнев И.А., Волобуев В.В., Шестаков А.В. и др. 2002. Лососевидные рыбы Северо-Востока России. Владивосток: Дальнаука. 491 с.

Шпигальская Н.Ю., Шапорев Р.А., Збоева Е.Н., Варнавская Н.В. 2005. Генетическая дифференциация по аллозимным локусам локальных популяций нерки Oncorhynchus nerka (Walbaum) в бассейне р. Камчатка (п-ов Камчатка) // Популяционная биология, генетика и систематика гидробионтов: Сб. науч. трудов. Петропавловск-Камчатский: Камчат-НИРО. Т. 1. С. 104–119.

Avise J.C. 1994. Molecular markers, natural history and evolution. N.Y.: Chapman and Hall. 511 p.

Beacham T.D., Le K.D., Raap M.R. et al. 2000. Microsatellite variation and estimation of stock composition of sockeye salmon, *Oncorhynchus nerka*, in Barkley Sound, British Columbia // Fish. Bull. V. 98. P. 14–24.

Beacham T.D., McIntosh B., Wallace C. 2010. A comparison of stock and individual identification for sockeye salmon (*Oncorhynchus nerka*) in British Columbia provided by microsatellites and single nucleotide polymorphisms. Canadian Journal of Fisheries and Aquatic Sciences. V. 67. P. 1274–1290.

Beacham T.D., McIntosh B., Wallace C. 2011. A comparison of polymorphism of genetic markers and population sample sizes required for mixed-stock analysis of sockeye salmon (*Oncorhynchus nerka*) in British Columbia // Canadian Journal of Fisheries and Aquatic Sciences. V. 68. P. 550–562.

Beacham T.D., Wood C.C. 1999. Application of microsatellite DNA variation to estimation of stock composition and escapement of Mass River sockeye salmon (Oncorhynchus nerka) // Canadian Journal of Fisheries and Aquatic Sciences. V. 56. № 2. P. 297–310.

Crete-Lafreniere A., Weir L.K., Bernatchez L. 2012. JX960816, JX960817 // GenBank.

Excoffier L., Laval G., Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis // Evol. Bioinformatics Online. V. 1. P. 47–50.

Fleming M.A., *Cook J.A.* 2002. Phylogeography of endemic ermine (Mustela erminea) in Southeast Alaska // Mol. Ecol. V. 11. P. 795–807.

Hsieh C.C., Tsai C.-L., Chang H.-W., Gwo J.-C., Chou Y.C. 2006. EF055889, NC008615// GenBank. Miller S., Underwood T., Spearman W.J. 1998. Genetic Assessment of Inconnu (Stenodus leucichthys) from the Selawik and Kobuk Rivers, Alaska, Using PCR and RFLP Analyses // Alaska Fisheries Technical Report. № 48. P. 1–13.

Moritz C., Dowling T.E., Brown W.M. 1987. Evolution of animal mitochondrial DNA: relevance for popula-

tion biology and systematic // Annu. Rev. Ecol. Syst. V. 18. P. 269–292.

Nei M. 1987. Molecular Evolutionary Genetics. N.Y.: Columbia Univ. Press. 495 p.

Nei M., Kumar S. 2000. Molecular evolution and phylogenetic. N.Y.: Oxford Univ. Press. 333 p.

Rogers A.R. 1998. Genetic evidence for a Pleistocene population explosion // Evolution. V. 49. P. 608–615. Rogers A.R., Harpending H. 1992. Population growth makes waves in the distribution of pair wise genetic differences // Mol. Biol. Evol. V. 9. P. 552–569.

Saitou N., Imanishi T. 1989. Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, maximum-evolution, and neighbor-joining methods of phylogenetic tree construction in obstraining the correct tree // Mol. Biol. Evol. V. 6. P. 514–525. *Tajima F.* 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism // Gen. Soc. of Am. P. 585–595.

Tamura K., Stecher G., Peterson D. et al. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0 // Mol. Biol. Evol. V. 30. P. 2725–2729. Weir B.S. 1996. Genetic data analysis II: Methods for discrete population genetic data. Sunderland. Massachusetts: Sinauer Ass. 445 p.

Zardoya R., Meyer A. 1996. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates // Mol. Biol. Evol. V. 13. № 7. P. 933–942.